232 research outputs found

    Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions

    Full text link
    We present a mathematical formulation of kinetic boundary conditions for Lattice Boltzmann schemes in terms of reflection, slip, and accommodation coefficients. It is analytically and numerically shown that, in the presence of a non-zero slip coefficient, the Lattice Boltzmann flow develops a physical slip flow component at the wall. Moreover, it is shown that the slip coefficient can be tuned in such a way to recover quantitative agreement with analytical and experimental results up to second order in the Knudsen number.Comment: 27 pages, 4 figure

    The Z-index: A geometric representation of productivity and impact which accounts for information in the entire rank-citation profile

    Get PDF
    We present a simple generalization of Hirsch's h-index, Z = \sqrt{h^{2}+C}/\sqrt{5}, where C is the total number of citations. Z is aimed at correcting the potentially excessive penalty made by h on a scientist's highly cited papers, because for the majority of scientists analyzed, we find the excess citation fraction (C-h^{2})/C to be distributed closely around the value 0.75, meaning that 75 percent of the author's impact is neglected. Additionally, Z is less sensitive to local changes in a scientist's citation profile, namely perturbations which increase h while only marginally affecting C. Using real career data for 476 physicists careers and 488 biologist careers, we analyze both the distribution of ZZ and the rank stability of Z with respect to the Hirsch index h and the Egghe index g. We analyze careers distributed across a wide range of total impact, including top-cited physicists and biologists for benchmark comparison. In practice, the Z-index requires the same information needed to calculate h and could be effortlessly incorporated within career profile databases, such as Google Scholar and ResearcherID. Because Z incorporates information from the entire publication profile while being more robust than h and g to local perturbations, we argue that Z is better suited for ranking comparisons in academic decision-making scenarios comprising a large number of scientists.Comment: 9 pages, 5 figure

    Towards a mesoscopic model of water-like fluids with hydrodynamic interactions

    Full text link
    We present a mesoscopic lattice model for non-ideal fluid flows with directional interactions, mimicking the effects of hydrogen-bonds in water. The model supports a rich and complex structural dynamics of the orientational order parameter, and exhibits the formation of disordered domains whose size and shape depend on the relative strength of directional order and thermal diffusivity. By letting the directional forces carry an inverse density dependence, the model is able to display a correlation between ordered domains and low density regions, reflecting the idea of water as a denser liquid in the disordered state than in the ordered one

    Effects of Nanoparticles on the Dynamic Morphology of Electrified Jets

    Full text link
    We investigate the effects of nanoparticles on the onset of varicose and whipping instabilities in the dynamics of electrified jets. In particular, we show that the non-linear interplay between the mass of the nanoparticles and electrostatic instabilities, gives rise to qualitative changes of the dynamic morphology of the jet, which in turn, drastically affect the final deposition pattern in electrospinning experiments. It is also shown that even a tiny amount of excess mass, of the order of a few percent, may more than double the radius of the electrospun fiber, with substantial implications for the design of experiments involving electrified jets as well as spun organic fibers.Comment: 8 pages, 7 figures, 1 tabl
    • …
    corecore